STAT4 Requires the N-terminal Domain for Efficient Phosphorylation
نویسندگان
چکیده
منابع مشابه
Role of the Stat4 N domain in receptor proximal tyrosine phosphorylation.
Stat4 is activated by the cytokines interleukin 12 and alpha interferon (IFN-alpha) and plays a significant role in directing development of naïve CD4(+) T cells to the Th1 phenotype. Signal transducers and activators of transcription (STAT) proteins undergo phosphorylation on a conserved tyrosine residue, resulting in homo- and heterodimerization, nuclear translocation, and DNA binding. Stat4 ...
متن کاملEfficient Production of HIV-1 Virus-Like Particles from a Mammalian Expression Vector Requires the N-Terminal Capsid Domain
It is now well accepted that the structural protein Pr55(Gag) is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55(Gag) is inserted in a mammali...
متن کاملN-Terminal Domain
Annexin I is a member of a multigene family of Ca2+ /phospholipid-binding proteins and a major substrate for the epidermal growth factor (EGF) receptor kinase, which has been implicated in membrane-related events along the endocytotic pathway, in particular in the sorting of internalized EGF receptors occurring in the multivesicular body. We analyzed in detail the intracellular distribution of ...
متن کاملHyperpolarizing GABAergic transmission requires the KCC2 C-terminal ISO domain.
KCC2 is the neuron-specific member of the of K(+)-Cl(-) cotransporter gene family. It is also the only member of its family that is active under physiologically normal conditions, in the absence of osmotic stress. By extruding Cl(-) from the neuron under isotonic conditions, this transporter maintains a low concentration of neuronal Cl(-), which is essential for fast inhibitory synaptic transmi...
متن کاملN-Terminal Domain of Fragile Histidine Triad Exerts Potent Cytotoxic Effect in HT1080 Cells
Fragile histidine triad (FHIT) serves a critical function as a tumor suppressor that inhibits p53 degradation by mouse double minute 2 (MDM2). The functional domains of FHIT involved in tumor inhibition was interpreted. In-silico screening data were employed to construct truncated forms of FHIT to assess their cytotoxic effects on the HT1080 cell line. Full FHIT expression was confirmed by west...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2003
ISSN: 0021-9258
DOI: 10.1074/jbc.m302776200